Backpropagation Convergence via Deterministic Nonmonotone Perturbed Minimization

نویسندگان

  • Olvi L. Mangasarian
  • Mikhail V. Solodov
چکیده

The fundamental backpropagation (BP) algorithm for training artificial neural networks is cast as a deterministic nonmonotone perturbed gradient method. Under certain natural assumptions, such as the series of learning rates diverging while the series of their squares converging, it is established that every accumulation point of the online BP iterates is a stationary point of the BP error function. The results presented cover serial and parallel online BP, modified BP with a momentum term, and BP with weight decay.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonmonotone and Perturbed Optimization

The primary purpose of this research is the analysis of nonmonotone optimization algorithms to which standard convergence analysis techniques do not apply. We consider methods that are inherently nonmonotone, as well as nonmono-tonicity induced by data perturbations or inexact subproblem solution. One of the principal applications of our results is the analysis of gradient-type methods that pro...

متن کامل

Nonmonotone methods for backpropagation training with adaptive learning rate

In this paper, we present nonmonotone methods for feedforward neural network training, i.e. training methods in which error function values are allowed to increase at some iterations. More specifically, at each epoch we impose that the current error function value must satisfy an Armijo-type criterion, with respect to the maximum error function value of M previous epochs. A strategy to dynamica...

متن کامل

Nonmonotone Spectral Projected Gradient Methods on Convex Sets

Nonmonotone projected gradient techniques are considered for the minimization of differentiable functions on closed convex sets. The classical projected gradient schemes are extended to include a nonmonotone steplength strategy that is based on the Grippo-Lampariello-Lucidi nonmonotone line search. In particular, the nonmonotone strategy is combined with the spectral gradient choice of stepleng...

متن کامل

An inexact and nonmonotone proximal method for smooth unconstrained minimization

An implementable proximal point algorithm is established for the smooth nonconvex unconstrained minimization problem. At each iteration, the algorithm minimizes approximately a general quadratic by a truncated strategy with step length control. The main contributions are: (i) a framework for updating the proximal parameter; (ii) inexact criteria for approximately solving the subproblems; (iii) ...

متن کامل

Deterministic nonmonotone strategies for effective training of multilayer perceptrons

We present deterministic nonmonotone learning strategies for multilayer perceptrons (MLPs), i.e., deterministic training algorithms in which error function values are allowed to increase at some epochs. To this end, we argue that the current error function value must satisfy a nonmonotone criterion with respect to the maximum error function value of the M previous epochs, and we propose a subpr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993